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Any suggestions, questions and remarks are welcome!

1 A little extra Linear Algebra

1. Show that any set of non-zero polynomials in F[x], no two of which have same degree, is linearly
independent over F.

2. Suppose that V is a vector space with dimension ≥ 2. Show that V has more than one basis.

3. Suppose that K , L, M article subspaces of a vector spaces V . Show that K ∩ (L + (K ∩ M) =
(K ∩ L) + (K ∩M).

4. Suppose M and N are subspaces of a vector space V . Show that (M + N)/N ∼= M/(M ∩ N).

5. Let V be a vector space over an infinite field F. Show that V cannot be the union of finitely many
proper subspaces of V .

6. Suppose that V is a finite dimensional vector space over F. Suppose TS = ST for every endo-
morphism S on V . Show that T = x IV for some scalar x .

7. Suppose that T is a linear functional on V . Show that (Im T ∗)⊥ = ker T and that ker T ∗ = Im T⊥.
Hence show that if V and W are finite dimensional vector spaces over F, and T : V → W is a
linear transformation, then rank T = rank T ∗.

8. Suppose that V is a vector space and that S = { f1, . . . , fn} ⊆ V ∗, Show S⊥ =
⋂n

i=1 ker fi .

9. Suppose that F is a finite field. Let V be a vector space over F of dimension n. Show that for
every m< n, the number of subspaces of V of dimension m is exactly the same as the number of
subspaces of V of dimension n−m.

10. Suppose that v1, . . . , vn are distinct non-zero vectors in a vector space V . Show that there is
T ∈ V ∗ such that T (vi) 6= 0 for any i.

11. Suppose V = M ⊕ N , where M and N are subspaces of the vector space V . Show that V ∗ =
N⊥ ⊕M⊥.

12. (Oddtown) There are n inhabitants of Oddtown numbered 1, . . . , n. They are allowed to form
clubs according to the following rules:

(a) Each club has an odd number of members.

(b) Each pair of clubs share an even number of members.

Show that the number of clubs formed cannot exceed n. Hint: Associate each club with a vector
in Zn

2.
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13. (From A Walk Through Combinatorics - Bona) The set A consists of n+ 1 positive integers, none
of which has a prime divisor that is larger than the nth smallest prime number. Prove that there
exists a non-empty subset B ⊆ A so that the product of the elements of B is a perfect square.

Definition (Eigenvector). A non-zero vector v ∈ V is said to be an eigenvector for T : V → V if span
v is T−invariant.

Definition (Eigenvalue). If T (v) = λv, we say λ is the eigenvalue for T corresponding to v.

Definition (Eigenspace). For a given map T : V → V and a scalar λ ∈ F, we define the eigenspace
Vλ to be

Vλ = {v ∈ V : T v = λv}.

That is, Vλ is the set of eigenvectors for T corresponding to λ.

Exercise 1.1. Show that Vλ is a subspace of V .

Definition (Geometric Multiplicity). For a givenλ ∈ F and Vλ as above, dim Vλ is called the geometric
multiplicity of λ.

Exercise 1.2. Think of rotation by 90◦ as linear map on R2. What are the eigenvectors?

Exercise 1.3. Suppose v is an eigenvector for T with eigenvalue λ and suppose f is an automorphism
on V . Can you find an eigenvector for f ◦ T ◦ f −1?

Exercise 1.4. Suppose B = {v1, . . . , vn} is a basis for V and that each vi is an eigenvector for a linear
transformation T : V → V such that vi corresponds to the eigenvalue λi . What will the matrix
representation of T with respect to B look like?

Exercise 1.5. Show that 0 is an eigenvalue for a linear transformation T on V iff T is not injective.

Exercise 1.6. Suppose φ,ψ are linear transformations on V . Show that φ◦ψ andψ◦φ have exactly
the same eigenvalues.

Exercise 1.7. Suppose v1, . . . , vn are different non-zero vectors for some linear transformation T on V
corresponding to distinct eigenvalues λ1, . . . ,λn. Show that the v1, . . . , vn are linearly independent.

2 Groups

Definition (Group). A nonempty set G is said to form a group if there is an associated binary oper-
ation (which we will denote by ◦) such that

1. (Closure) If a, b ∈ G, then a ◦ b ∈ G.

2. (Associativity) If a, b, c ∈ G, then (a ◦ b) ◦ c ∈ G.

3. (Existence of Identity) There is an element e ∈ G such that a ◦ e = e ◦ a = a for every a ∈ G.

4. (Existence of Inverses) For every a ∈ G there is an element a−1 ∈ G such that a◦a−1 = a−1◦a = e.

If, in addition, the group satisfies the condition that for every a, b ∈ G, a ◦ b = b ◦ a, then we
call the group an abelian group.

Exercise 2.1. Show that the identity in a group is unique. Show also that each g ∈ G has a unique
inverse and so we can talk about "the" identity and "the" inverse of g.

Exercise 2.2. Show that for each pair a, b ∈ G, there is a unique element x ∈ G such that a ◦ x = b
and a unique y ∈ G such that y ◦ a = b. This means that the "equations" a ◦ x = b and y ◦ a = b
have unique solutions.
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Exercise 2.3. Suppose that H is a nonempty set with an associative operation (which we will denote
by ∗) and an identity element e. Suppose that every element h ∈ H has a left inverse h′ such that
h′ ∗ h= e. Show that (H,∗) is a group.

By showing this, you are showing that the axioms for a group are stronger than necessary.

Exercise 2.4. For an arbitrary element in a group, show that h−1 ◦ g−1 = (g ◦ h)−1.

Example 2.5. Let X be a nonempty set and let L(X ) be the set of all bijections from X to itself. Then
L(X ) is a group under the operation of composition of functions. If X is finite, what is |L(X )|?

Definition. Suppose that (G,◦) is a group. Suppose that H and K are subsets of G. Then define HK
to be the set {h ◦ k : h ∈ H, k ∈ K}.

Similarly, we can define gH and K g for g ∈ G to be {gh : h ∈ H} and {kg : k ∈ K} respectively.

Definition. Suppose G = (G,◦) is a group. Suppose H is a nonempty subset of G which is closed
under ◦. Suppose that the following also hold.

1. H ◦H ⊆ H.

2. If h ∈ H, then h−1 ∈ H.

Then we say H is a subgroup of G.

Exercise 2.6. Suppose that for every i ∈ I , Hi is a subgroup of a group G. Show that
⋂

i∈I

Hi

is a subgroup of G.

Do you remember an analogous theorem for subspaces? You will see many similarities with
subspaces and subgroups because a Vector space is really an abelian group with respect to addition.

Exercise 2.7. Note that (Z,+) is a group. Show that every subgroup of Z under + is of the form
nZ= {nz : z ∈ Z} where n ∈ Z.

Definition (Cosets). Suppose that H is a subgroup of G and g ∈ G. Then gH as defined above is
called the left coset of g with respect to H. We can analogously define H g, the right coset of g with
respect to H.

Exercise 2.8. Suppose that G is a group and that N is a subgroup of G. Let∼ be a relation on a group
G such that g ∼ h iff h ∈ gN . Show that this is an equivalence relation on G.

We denote G/∼= {gN : g ∈ G} by G/N .

Exercise 2.9. Consider the group (Z,+). Suppose n ∈ Z+. What is Z/nZ?

Definition (Normal Subgroup). A subgroup N of a group G is called a normal subgroup of G if
gN = N g for every g ∈ G. We call gN the coset of g modulo N .

That is, the left and right cosets are the same. Every subgroup in an abelian group is clearly
normal, but normal subgroups are possible in non-abelian groups as well.

Exercise 2.10. Suppose that N is a normal subgroup of a group G and g, h ∈ G. Show that (gN)(hN) =
(g ◦ h)N where (gN)(hN) denotes the product of the sets gN and hN as defined above.

This shows that normal subgroups respect products, and this allows for a lot of interesting prop-
erties.

Exercise 2.11. Suppose that G is a group and N is a normal subgroup of N . Let [g] denote gN , the
coset of g modulo N . Let ∗ : G/N → G/N be defined by [g] ∗ [h] = [g ◦ h]. Show that (G/N ,∗) is a
group. What is the identity? What is the inverse of [g]?
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Definition (Group Homomorphism). Suppose (G,◦) and (G′,◦′) are groups. A function φ : G→ G′

is called a group homomorphism if for every g, h ∈ G we have

φ(g ◦ h) = φ(g) ◦′ φ(h).

A homomorphism from G to itself is called an endomorphism.

Definition. Suppose φ : G→ G′ is a group homomorphism. The kernel of φ, denoted by ker φ, is
the set {g ∈ G : φ(g) = e′}= φ−1(e′).

Exercise 2.12. Suppose e and e′ are the identity elements of G and G′ respectively. Show that φ(e) =
e′. Suppose g ∈ G. What is φ(g−1)?

Exercise 2.13. Supposeφ : G→ G′ is a group homomorphism. Show that kerφ is a normal subgroup
of G.

Exercise 2.14. Suppose N is a normal subgroup of a group G. Show that there is some group homo-
morphism for which N is the kernel.

Exercise 2.15. Suppose φ : G → G′ is a group homomorphism. Let N = ker φ. Then, for g ∈ G,
show that gN = N g = φ−1(φ(g)).

Exercise 2.16. Show that a homomorphism φ : G→ G′ is injective iff ker φ = {e}.

Exercise 2.17. Suppose N is a normal subgroup of G. Show that the quotient function ψ : G→ G/N
is a surjective homomorphism. What is ker ψ?

Definition. A bijective homomorphism φ : G → G′ is called an isomorphism. In this case we say
that G and G′ are isomorphic and write G ∼= G′. An isomorphism from a group to itself is called an
automorphism.

Isomorphic groups are essentially identical. In fact, the relation ∼= on a set of groups is an
equivalence relation.

Exercise 2.18. Suppose that φ : G → G′ is an isomorphism. Show that φ−1 is an isomorphism as
well.

Exercise 2.19. Suppose that G is a group and that g ∈ G. Then the map φ : G → G defined by
φ(x) = g x g−1 is an automorphism.

Exercise 2.20. Let φ : G→ G′ be a homomorphism. Is Im φ a normal subgroup of G′?

Exercise 2.21. Show that the image of a normal subgroup N of a group G under a surjective homo-
morphism φ : G→ G′ is a normal subgroup of G′. What happens if φ is not surjective?

Exercise 2.22 (First Isomorphism Theorem). Let φ : G→ G′ be a homomorphism and that ψ is the
quotient function ψ : G → G/ ker φ. Then there is a unique isomorphism eφ : G/ ker φ → Imφ
such that φ = eφ ◦ψ. Hence G/ ker φ ∼= Imφ.

Definition. The order of a group (G,◦) is |G| and is denoted by o(G). This is only relevant when G
is finite.

Exercise 2.23. Show that there is a bijection between the (left) right cosets formed by a subgroup H
of a group G.

Exercise 2.24. (Lagrange’s Theorem) Suppose that G is a group having finite order and that H is a
subgroup of G. Show that H also has finite order and that o(H) | o(G).
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3 Algebras over a Field

Definition (Algebra over a Field). An algebra over a field F (sometimes called an F-algebra) is a
vector space V over Fwhich also has a binary operation ∗ (which we call "multiplication" or a bilinear
product) such that for all ~u, ~v, ~w ∈ V we have

1. ~u · (~v + ~w) = ~u · ~v + ~u · ~w,

2. (~v + ~w) · ~u= ~v · ~u+ ~w · ~u,

3. and, ~v · (a ~w) = a(~v · ~w) = (a~v) · ~w for any scalar a.

We say that an algebra has a unit element if there is a ~1 ∈ V such that ~1~v = ~v~1= ~v.

Note that any field is an algebra over itself, but every algebra need not be a field because there
may be non-invertible non-zero elements in the algebra.

Definition. Suppose that V is a vector space over a field F. Let End(V ) denote the set of endomor-
phisms on V . Remember that End(V ) is a vector space over F.

Let’s make End(V ) into an algebra. For f , g ∈ End(V ) define f g to be h ∈ End(V ) where
h(v) = f (g(v)). That is f g = f ◦ g, where ◦ represents the usual operation of composition.

Exercise 3.1. Show that End(V ) is really an algebra with the multiplication defined above. Is there
a unit element?

Definition (Units). Suppose that A is an algebra with a unit element 1. Then define an element
a ∈ A to be a unit if there is a b ∈ A such that ab = ba = 1. That is, a unit is an invertible element
in A.

Exercise 3.2. Suppose A is an algebra over a field F. Suppose the multiplication on A is associative
(we call it an associative algebra). Show that U , the set of all the units in A, is a group under
multiplication.

In the case of End(V ), this group is denoted by GL(V ) and called the general linear group over
V . GL(n,R) (or GLn(F) in general) is the set of invertible n× n matrices with elements in R. Do
you see why GL(n,R) is a group?

Exercise 3.3. What is the order of GL2(Z/pZ) when p is prime?

Exercise 3.4. Show that the units in End(V ) are precisely the automorphisms on V .

Exercise 3.5. Suppose A is an algebra over F and v ∈ A. Define φa : A→ A by φa(v) = a ◦ v for any
v ∈ A. Show that φa is an endomorphism on A. Similarly show that ψa : A→ A by ψa(v) = v ◦ a is
an endomorphism as well.

Thus the multiplication in an algebra is a special type of an operation called a bilinear map. Can
you guess why it is called that?

Exercise 3.6. Suppose V and W are vector spaces and φ : End(V )→ End(V ′) is an isomorphism.

(a) Suppose that V and V ′ are finite dimensional. Show that V ∼= V ′.

(b) Now remove the assumption that V or V ′ is finite dimensional. Show that V ∼= V ′.

Definition (Division Algebra). An algebra A with a unit 1 is called a division algebra if A\ {0} is a
group under multiplication. That is, in a division algebra every non-zero element is a unit.

Exercise 3.7. Show that a finite dimensional algebra A with unity is a division algebra iff it has no
zero divisors.
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Let’s talk about quaternions. They came about as William Rowan Hamilton’s failed efforts to form
a three dimensional number system (the real numbers are a one dimensional number system and the
complex numbers are a two dimensional number system). He instead discovered the Quaternions,
which is a almost a four dimensional number system because it lacks commutativity.

Definition. Consider H, a four dimensional vector space over R with a basis {1, i, j, k}. That is,
every element h ∈ H can be written uniquely in the form h = a1+ bi + c j + dk for reals a, b, c, d.
Lets make it into an algebra with the following rules of multiplication:

1. 1 ◦h= h for every h ∈H;

2. i2 = j2 = k2 = −1;

3. i ◦ j = k, j ◦ j = i, k ◦ i = j;

4. j ◦ i = −k, k ◦ j = −i, i ◦ k = − j.

We call this the Quaternion Algebra over R.

Exercise 3.8. Consider the map C :H→H defined by C(a+ bi+ c j+ dk = a− bi− c j− dk. We call
this the "complex conjugation map" and write C(z) = z̄ for z ∈ H. SHow that z1z2 = z1·z2 for every
z1, z2 ∈H.

Note that we expect this to be true because the quaternions are really meant to be an extension
of the complex numbers.

Exercise 3.9. Suppose z = a+ bi + c j + dk ∈H. Show z · z = a2 + b2 + c2 + d2.

Exercise 3.10. Show that every non-zero element in H is invertible. Hence conclude that H is a
division algebra.
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