A Little Beyond: Linear Algebra

Akshay Tiwary

March 6, 2016

Any suggestions, questions and remarks are welcome!

1 A little extra Linear Algebra

- 1. Show that any set of non-zero polynomials in $\mathbb{F}[x]$, no two of which have same degree, is linearly independent over \mathbb{F} .
- 2. Suppose that *V* is a vector space with dimension \geq 2. Show that *V* has more than one basis.
- 3. Suppose that K, L, M article subspaces of a vector spaces V. Show that $K \cap (L + (K \cap M) = (K \cap L) + (K \cap M)$.
- 4. Suppose *M* and *N* are subspaces of a vector space *V*. Show that $(M + N)/N \cong M/(M \cap N)$.
- 5. Let *V* be a vector space over an infinite field \mathbb{F} . Show that *V* cannot be the union of finitely many proper subspaces of *V*.
- 6. Suppose that *V* is a finite dimensional vector space over \mathbb{F} . Suppose TS = ST for every endomorphism *S* on *V*. Show that $T = xI_V$ for some scalar *x*.
- 7. Suppose that *T* is a linear functional on *V*. Show that $(\operatorname{Im} T^*)^{\perp} = \ker T$ and that $\ker T^* = \operatorname{Im} T^{\perp}$. Hence show that if *V* and *W* are finite dimensional vector spaces over \mathbb{F} , and $T : V \to W$ is a linear transformation, then rank $T = \operatorname{rank} T^*$.
- 8. Suppose that *V* is a vector space and that $S = \{f_1, \ldots, f_n\} \subseteq V^*$, Show $S^{\perp} = \bigcap_{i=1}^n \ker f_i$.
- 9. Suppose that \mathbb{F} is a finite field. Let *V* be a vector space over \mathbb{F} of dimension *n*. Show that for every m < n, the number of subspaces of *V* of dimension *m* is exactly the same as the number of subspaces of *V* of dimension n m.
- 10. Suppose that v_1, \ldots, v_n are distinct non-zero vectors in a vector space *V*. Show that there is $T \in V^*$ such that $T(v_i) \neq \mathbf{0}$ for any *i*.
- 11. Suppose $V = M \oplus N$, where *M* and *N* are subspaces of the vector space *V*. Show that $V^* = N^{\perp} \oplus M^{\perp}$.
- 12. (Oddtown) There are n inhabitants of Oddtown numbered 1,...,*n*. They are allowed to form clubs according to the following rules:
 - (a) Each club has an odd number of members.
 - (b) Each pair of clubs share an even number of members.

Show that the number of clubs formed cannot exceed n. *Hint: Associate each club with a vector in* \mathbb{Z}_2^n .

13. (From A Walk Through Combinatorics - Bona) The set *A* consists of n + 1 positive integers, none of which has a prime divisor that is larger than the *n*th smallest prime number. Prove that there exists a non-empty subset $B \subseteq A$ so that the product of the elements of *B* is a perfect square.

Definition (Eigenvector). A non-zero vector $v \in V$ is said to be an *eigenvector* for $T : V \to V$ if span v is T-invariant.

Definition (Eigenvalue). If $T(v) = \lambda v$, we say λ is the *eigenvalue* for *T* corresponding to *v*.

Definition (Eigenspace). For a given map $T : V \to V$ and a scalar $\lambda \in \mathbb{F}$, we define the *eigenspace* V_{λ} to be

$$V_{\lambda} = \{ v \in V : Tv = \lambda v \}.$$

That is, V_{λ} is the set of eigenvectors for *T* corresponding to λ .

Exercise 1.1. Show that V_{λ} is a subspace of *V*.

Definition (Geometric Multiplicity). For a given $\lambda \in \mathbb{F}$ and V_{λ} as above, dim V_{λ} is called the *geometric multiplicity* of λ .

Exercise 1.2. Think of rotation by 90° as linear map on \mathbb{R}^2 . What are the eigenvectors?

Exercise 1.3. Suppose *v* is an eigenvector for *T* with eigenvalue λ and suppose *f* is an automorphism on *V*. Can you find an eigenvector for $f \circ T \circ f^{-1}$?

Exercise 1.4. Suppose $B = \{v_1, ..., v_n\}$ is a basis for *V* and that each v_i is an eigenvector for a linear transformation $T : V \to V$ such that v_i corresponds to the eigenvalue λ_i . What will the matrix representation of *T* with respect to *B* look like?

Exercise 1.5. Show that 0 is an eigenvalue for a linear transformation T on V iff T is not injective.

Exercise 1.6. Suppose ϕ , ψ are linear transformations on *V*. Show that $\phi \circ \psi$ and $\psi \circ \phi$ have exactly the same eigenvalues.

Exercise 1.7. Suppose v_1, \ldots, v_n are different non-zero vectors for some linear transformation *T* on *V* corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that the v_1, \ldots, v_n are linearly independent.

2 Groups

Definition (Group). A nonempty set *G* is said to form a *group* if there is an associated binary operation (which we will denote by \circ) such that

- 1. (Closure) If $a, b \in G$, then $a \circ b \in G$.
- 2. (Associativity) If $a, b, c \in G$, then $(a \circ b) \circ c \in G$.
- 3. (Existence of Identity) There is an element $e \in G$ such that $a \circ e = e \circ a = a$ for every $a \in G$.
- 4. (Existence of Inverses) For every $a \in G$ there is an element $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$.

If, in addition, the group satisfies the condition that for every $a, b \in G$, $a \circ b = b \circ a$, then we call the group an abelian group.

Exercise 2.1. Show that the identity in a group is unique. Show also that each $g \in G$ has a unique inverse and so we can talk about "the" identity and "the" inverse of g.

Exercise 2.2. Show that for each pair $a, b \in G$, there is a unique element $x \in G$ such that $a \circ x = b$ and a unique $y \in G$ such that $y \circ a = b$. This means that the "equations" $a \circ x = b$ and $y \circ a = b$ have unique solutions.

Exercise 2.3. Suppose that *H* is a nonempty set with an associative operation (which we will denote by *) and an identity element *e*. Suppose that every element $h \in H$ has a left inverse h' such that h' * h = e. Show that (H, *) is a group.

By showing this, you are showing that the axioms for a group are stronger than necessary.

Exercise 2.4. For an arbitrary element in a group, show that $h^{-1} \circ g^{-1} = (g \circ h)^{-1}$.

Example 2.5. Let *X* be a nonempty set and let L(X) be the set of all bijections from *X* to itself. Then L(X) is a group under the operation of composition of functions. If *X* is finite, what is |L(X)|?

Definition. Suppose that (G, \circ) is a group. Suppose that *H* and *K* are subsets of *G*. Then define *HK* to be the set $\{h \circ k : h \in H, k \in K\}$.

Similarly, we can define *gH* and *Kg* for $g \in G$ to be $\{gh : h \in H\}$ and $\{kg : k \in K\}$ respectively.

Definition. Suppose $G = (G, \circ)$ is a group. Suppose *H* is a nonempty subset of *G* which is closed under \circ . Suppose that the following also hold.

1. $H \circ H \subseteq H$.

2. If $h \in H$, then $h^{-1} \in H$.

Then we say *H* is a *subgroup* of *G*.

Exercise 2.6. Suppose that for every $i \in I$, H_i is a subgroup of a group G. Show that

is a subgroup of G.

Do you remember an analogous theorem for subspaces? You will see many similarities with subspaces and subgroups because a Vector space is really an abelian group with respect to addition. *Exercise* 2.7. Note that $(\mathbb{Z}, +)$ is a group. Show that every subgroup of \mathbb{Z} under + is of the form $n\mathbb{Z} = \{nz : z \in \mathbb{Z}\}$ where $n \in \mathbb{Z}$.

Definition (Cosets). Suppose that *H* is a subgroup of *G* and $g \in G$. Then *gH* as defined above is called the *left coset* of *g* with respect to *H*. We can analogously define *Hg*, the right coset of *g* with respect to *H*.

Exercise 2.8. Suppose that *G* is a group and that *N* is a subgroup of *G*. Let \sim be a relation on a group *G* such that $g \sim h$ iff $h \in gN$. Show that this is an equivalence relation on *G*.

We denote $G/\sim = \{gN : g \in G\}$ by G/N.

Exercise 2.9. Consider the group $(\mathbb{Z}, +)$. Suppose $n \in \mathbb{Z}^+$. What is $\mathbb{Z}/n\mathbb{Z}$?

Definition (Normal Subgroup). A subgroup *N* of a group *G* is called a *normal subgroup* of *G* if gN = Ng for every $g \in G$. We call gN the coset of g modulo *N*.

That is, the left and right cosets are the same. Every subgroup in an abelian group is clearly normal, but normal subgroups are possible in non-abelian groups as well.

Exercise 2.10. Suppose that *N* is a normal subgroup of a group *G* and $g, h \in G$. Show that $(gN)(hN) = (g \circ h)N$ where (gN)(hN) denotes the product of the sets gN and hN as defined above.

This shows that normal subgroups respect products, and this allows for a lot of interesting properties.

Exercise 2.11. Suppose that *G* is a group and *N* is a normal subgroup of *N*. Let [g] denote gN, the coset of *g* modulo *N*. Let $*: G/N \to G/N$ be defined by $[g]*[h] = [g \circ h]$. Show that (G/N, *) is a group. What is the identity? What is the inverse of [g]?

Definition (Group Homomorphism). Suppose (G, \circ) and (G', \circ') are groups. A function $\phi : G \to G'$ is called a *group homomorphism* if for every $g, h \in G$ we have

$$\phi(g \circ h) = \phi(g) \circ' \phi(h).$$

A homomorphism from G to itself is called an *endomorphism*.

Definition. Suppose $\phi : G \to G'$ is a group homomorphism. The kernel of ϕ , denoted by ker ϕ , is the set $\{g \in G : \phi(g) = e'\} = \phi^{-1}(e')$.

Exercise 2.12. Suppose *e* and *e'* are the identity elements of *G* and *G'* respectively. Show that $\phi(e) = e'$. Suppose $g \in G$. What is $\phi(g^{-1})$?

Exercise 2.13. Suppose $\phi : G \to G'$ is a group homomorphism. Show that ker ϕ is a normal subgroup of *G*.

Exercise 2.14. Suppose N is a normal subgroup of a group G. Show that there is some group homomorphism for which N is the kernel.

Exercise 2.15. Suppose $\phi : G \to G'$ is a group homomorphism. Let $N = \ker \phi$. Then, for $g \in G$, show that $gN = Ng = \phi^{-1}(\phi(g))$.

Exercise 2.16. Show that a homomorphism $\phi : G \to G'$ is injective iff ker $\phi = \{e\}$.

Exercise 2.17. Suppose *N* is a normal subgroup of *G*. Show that the quotient function $\psi : G \to G/N$ is a surjective homomorphism. What is ker ψ ?

Definition. A bijective homomorphism $\phi : G \to G'$ is called an *isomorphism*. In this case we say that *G* and *G'* are isomorphic and write $G \cong G'$. An isomorphism from a group to itself is called an *automorphism*.

Isomorphic groups are essentially identical. In fact, the relation \cong on a set of groups is an equivalence relation.

Exercise 2.18. Suppose that $\phi : G \to G'$ is an isomorphism. Show that ϕ^{-1} is an isomorphism as well.

Exercise 2.19. Suppose that *G* is a group and that $g \in G$. Then the map $\phi : G \to G$ defined by $\phi(x) = gxg^{-1}$ is an automorphism.

Exercise 2.20. Let $\phi : G \to G'$ be a homomorphism. Is Im ϕ a normal subgroup of G'?

Exercise 2.21. Show that the image of a normal subgroup *N* of a group *G* under a surjective homomorphism $\phi : G \to G'$ is a normal subgroup of *G'*. What happens if ϕ is not surjective?

Exercise 2.22 (First Isomorphism Theorem). Let $\phi : G \to G'$ be a homomorphism and that ψ is the quotient function $\psi : G \to G/ \ker \phi$. Then there is a unique isomorphism $\tilde{\phi} : G/ \ker \phi \to \operatorname{Im} \phi$ such that $\phi = \tilde{\phi} \circ \psi$. Hence $G/ \ker \phi \cong \operatorname{Im} \phi$.

Definition. The *order* of a group (G, \circ) is |G| and is denoted by o(G). This is only relevant when *G* is finite.

Exercise 2.23. Show that there is a bijection between the (left) right cosets formed by a subgroup H of a group G.

Exercise 2.24. (Lagrange's Theorem) Suppose that *G* is a group having finite order and that *H* is a subgroup of *G*. Show that *H* also has finite order and that o(H) | o(G).

3 Algebras over a Field

Definition (Algebra over a Field). An *algebra* over a field \mathbb{F} (sometimes called an \mathbb{F} -algebra) is a vector space *V* over \mathbb{F} which also has a binary operation * (which we call "multiplication" or a bilinear product) such that for all $\vec{u}, \vec{v}, \vec{w} \in V$ we have

1. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$,

2.
$$(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}$$
,

3. and, $\vec{v} \cdot (a\vec{w}) = a(\vec{v} \cdot \vec{w}) = (a\vec{v}) \cdot \vec{w}$ for any scalar *a*.

We say that an algebra has a *unit element* if there is a $\vec{1} \in V$ such that $\vec{1}\vec{v} = \vec{v}\vec{1} = \vec{v}$.

Note that any field is an algebra over itself, but every algebra need not be a field because there may be non-invertible non-zero elements in the algebra.

Definition. Suppose that *V* is a vector space over a field \mathbb{F} . Let End(V) denote the set of endomorphisms on *V*. Remember that End(V) is a vector space over \mathbb{F} .

Let's make End(V) into an algebra. For $f, g \in End(V)$ define fg to be $h \in End(V)$ where h(v) = f(g(v)). That is $fg = f \circ g$, where \circ represents the usual operation of composition.

Exercise 3.1. Show that End(V) is really an algebra with the multiplication defined above. Is there a unit element?

Definition (Units). Suppose that *A* is an algebra with a unit element 1. Then define an element $a \in A$ to be a *unit* if there is a $b \in A$ such that ab = ba = 1. That is, a unit is an invertible element in *A*.

Exercise 3.2. Suppose *A* is an algebra over a field \mathbb{F} . Suppose the multiplication on *A* is associative (we call it an associative algebra). Show that *U*, the set of all the units in *A*, is a group under multiplication.

In the case of End(V), this group is denoted by GL(V) and called the general linear group over V. $GL(n, \mathbb{R})$ (or $GL_n(\mathbb{F})$ in general) is the set of invertible $n \times n$ matrices with elements in \mathbb{R} . Do you see why $GL(n, \mathbb{R})$ is a group?

Exercise 3.3. What is the order of $GL_2(\mathbb{Z}/p\mathbb{Z})$ when *p* is prime?

Exercise 3.4. Show that the units in End(V) are precisely the automorphisms on V.

Exercise 3.5. Suppose *A* is an algebra over \mathbb{F} and $v \in A$. Define $\phi_a : A \to A$ by $\phi_a(v) = a \circ v$ for any $v \in A$. Show that ϕ_a is an endomorphism on *A*. Similarly show that $\psi_a : A \to A$ by $\psi_a(v) = v \circ a$ is an endomorphism as well.

Thus the multiplication in an algebra is a special type of an operation called a *bilinear map*. Can you guess why it is called that?

Exercise 3.6. Suppose V and W are vector spaces and $\phi : End(V) \rightarrow End(V')$ is an isomorphism.

(a) Suppose that *V* and *V*' are finite dimensional. Show that $V \cong V'$.

(b) Now remove the assumption that *V* or *V*' is finite dimensional. Show that $V \cong V'$.

Definition (Division Algebra). An algebra *A* with a unit 1 is called a division algebra if $A \setminus \{0\}$ is a group under multiplication. That is, in a division algebra every non-zero element is a unit.

Exercise 3.7. Show that a finite dimensional algebra *A* with unity is a division algebra iff it has no zero divisors.

Let's talk about quaternions. They came about as William Rowan Hamilton's failed efforts to form a three dimensional number system (the real numbers are a one dimensional number system and the complex numbers are a two dimensional number system). He instead discovered the *Quaternions*, which is a almost a four dimensional number system because it lacks commutativity.

Definition. Consider \mathbb{H} , a four dimensional vector space over \mathbb{R} with a basis $\{1, i, j, k\}$. That is, every element $h \in \mathbb{H}$ can be written uniquely in the form h = a1 + bi + cj + dk for reals a, b, c, d. Lets make it into an algebra with the following rules of multiplication:

- 1. $1 \circ h = h$ for every $h \in \mathbb{H}$;
- 2. $i^2 = j^2 = k^2 = -1;$
- 3. $i \circ j = k$, $j \circ j = i$, $k \circ i = j$;
- 4. $j \circ i = -k, k \circ j = -i, i \circ k = -j$.

We call this the *Quaternion Algebra over* \mathbb{R} .

Exercise 3.8. Consider the map $C : \mathbb{H} \to \mathbb{H}$ defined by C(a + bi + cj + dk = a - bi - cj - dk. We call this the "complex conjugation map" and write $C(z) = \overline{z}$ for $z \in \mathbb{H}$. Show that $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$ for every $z_1, z_2 \in \mathbb{H}$.

Note that we expect this to be true because the quaternions are really meant to be an extension of the complex numbers.

Exercise 3.9. Suppose $z = a + bi + cj + dk \in \mathbb{H}$. Show $z \cdot \overline{z} = a^2 + b^2 + c^2 + d^2$.

Exercise 3.10. Show that every non-zero element in \mathbb{H} is invertible. Hence conclude that \mathbb{H} is a division algebra.